Need to Node:
Profiling Node.|s Applications

Patrick Mueller

OOOOOOOOOO

Questions during the Need to Node webinar?

POst a question to Twitter
with the hashtag:

#needtonode

NodeSource is the Enterprise Node.|js company
offering a suite of products and professional
services explicitly focused on the needs of

Enterprise users of Node.|s.

NODESOURCE "

@ 3 © 2016 NodeSource Confidential

Agenda

Introduction to profiling Node.js applications

Explain what profiling applications means, and what kind
of profiling is available for Node.js

. Show what insights are provided when profiling Node.js
applications

Demonstrate using the Node.js profilers

@ 4 © 2016 NodeSource Confidential

What is profiling?

What is profiling?

Profiling is:
capturing statistics while a program is running

displaying those statistics with usetul visualizations

Provides deep view into application performance

No more guessing at what your program is doing

@ 6 © 2016 NodeSource Confidential

What kind of profiling can | do with Node.js?

Profiling Node.js applications

- V8 heap snapshot profiler - measures memory usage
. Tind memory leaks
optimize memory use by your program
. V8 CPU profiler - measures function execution time
- Tind bottlenecks in your application

optimize the performance of your program

@ 7 © 2016 NodeSource Confidential

What s profiling?

What is the real value in profiling?
Run your programs faster
Run your programs with less RAM

Find difficult to diagnose problems - leaking memory anc
code bottlenecks

Save SS

@ 8 © 2016 NodeSource Confidential

What kind of insights does the
heap snapshot profiler provide?

Heap Snapshot profiler

What does the heap snapshot profiler do?

While your program is running, generates a JSON-able

description of all JavaScript o
orogram at a specific pointin
between those objects.

[
h—l

:)..a

ects allocated in your

me, and the references

This description is quite large; plan on 2x RAM usage of

your application.

- Visualization shows object counts/sizes by constructor
(class), and references to and from individual objects.

@ 10 © 2016 NodeSource Confidential

Heap Snapshot insights - counts/sizes per class (N|Solid)

Constructors

FILTER e.g. Array OBJECTS ¢ SHALLOW SIZE RETAINED SIZE

(system) 426.81 KB 588.29 KB
(array)

(string)

(compiled code)

(closure) 163.62 KB

Object 42.97 KB

@ 11 © 2016 NodeSource Confidential

Heap Snapshot insights

shallow size vs retained size

shallow size - arr
itself; typically on

retained size - total amr

ount of memory this object uses just by
y relevant for Strings and Arrays

ount of memory this object is

referencing that would be garbage collected (GC’d) if this

object was garbage collectec

interesting number

Heap Sna
name, so

@ 12 © 2016 NodeSource Confidential

DShO

s are typically grou

Itera

L objects are all lum

DeC

- usually the more

by constructor

ned into Object

Heap Snapshotinsights - snapshot diff (Chrome Dev Tools)

Comparison ¥ mem-hawg- 1 ,8582434a 6205 ataad 7c76eb0abd1b2e5f7¢c-1453125680441 v

Constructor ¢ | : ¥ Delta Alloc. Sizev | Freed Size | Size Delta

» Point2D +1 156 55 488 0 +55 488
» (compiled code) . 58 -420 34112 352 128 -318016
> (array) -557 19 368 81784 ~-62 416
P (system) -529 2328 17 552 -15 224
P (string) - 184 40 7688 -7 648
> Array 0 32 32 0
» (concatenated string) -23 0 920 -920

Retainers
Object Distance A Shallow Size Retained Size

From the time the first snapshot was taken, till the second
snapshot was taken, 1156 new Point2D objects were
created, and none were garbage collected

@ 13 © 2016 NodeSource Confidential

Heap Snapshotinsights - which objects reference selected object (Chrome Dev Tools)

Constructor Distance Objects Count | Shallow Size Retained Size
> (array) - | 6177 B 3055784 35! 5294 736
> system / Context 3 191 20432 ~ 3957092
» Map 5 4 128 ’ 3837664
» (compiled code) 3 4394 6 1412640 16! 2635 360
¥ Point2D 7141710 57 2002056 23 2002056

> Point2d 8443 __ _n—-z-

» Point2D @8451 11 48 » 48

» Point2D @8453
»Poasnt2D _A8ALEE

Retainers ThiS POintZD ObjeCt iS
Object
v 148280 in [] @139625

_ being referenced
v_rp\>eat‘ in "l’i.:neout @137575 |) by this Lea kycaChe

v _idlePrev in Timer @793
v [18] in @135185 d l bl
v Lists in system / Context @31049 mo u e Varla e
vcontext in function () ©@21255
p setInterval in @583
pvalue 1n system / PropertyCell @31131
psetinterval in @28109

. . ™~ e ~ -l _ ~ ~ '~ 2 f .

@ 14 © 2016 NodeSource Confidential

What kind ot insights does
CPU profiling provide?

CPU profiler

What does the CPU profiler do?

While your program is running, you can start the profiler, let
n for some number of seconds, and then stop the

It re
Dro

ak)

.

While the profiler is running, it collects the stack of
runctions being executed, at a sub-millisecond interval.

When the profiler is stopped, that data is aggregated into
a JSON-able object.

- Visualizations show object function call stacks, function
execution time, and aggregate function call times.

@ 16 © 2016 NodeSource Confidential

CPU profiling insights - flame graph (N|Solid)

DONE X

CALLS FUNCTION SELF TOTAL

- doStuff 112ms 112ms

samples/cpu-profile.js 17.45% 17.45%

7 X 2ms 114ms

doStuff samples/cpu-profile.js 0.20% 17.65%

. y Oms 311ms

samples/cpu-profile.js 0.00% 48.43%

. z 2ms 485ms

samples/cpu-profile.js 0.20% 75.69%
m
>
v

; ; main Oms 630ms

= samples/cpu-profile.js 0.00% 98.24%

; listOnTimeout Oms 630ms

timers.js 0.00% 98.24%

17 © 2016 NodeSource Confidential

CPU profiling insights

total time vs self time

total time - total elapsed time spentin a function

self time -total elapsed time spent

total time spentin functions callec

in afu

from t

NCtl

1S

on, MINUS

function

source location of functions provided in profiling data

name your functions, lest you see lots of functions named

“(anonymous function)”

@ 18 © 2016 NodeSource Confidential

CPU profiling insights - sunburst (N|Solid)

19 © 2016 NodeSource Confidential

doStuff

CALLS FUNCTION

158

doStuff
samples/cpu-hawg.j
S

y
samples/cpu-hawg.j
S

z
samples/cpu-hawg,]
S

processThings
samples/cpu-hawg.j
S

wrapper

timers.js

listOnTimeout

timers.js

DONE X

SELF TOTAL

198ms 198ms
30.92%30.92%

3ms 309ms
0.39% 48.34%

2ms 480ms
0.20% 74.95%

Oms 622ms
0.00% 97.26%

Oms 622ms
0.00% 97.26%

3ms 625ms
0.39% 97.65%

CPU profiling insights - treemap (N|Solid)

20 © 2016 NodeSource Confidential

CALLS FUNCTION

158

doStuff
samples/cpu-hawg.j

S

y
samples/cpu-hawg.j

S

z
samples/cpu-hawg.j

S

processThings
samples/cpu-hawg.j

S

wrapper

timers.|s

listOnTimeout

timers.Js

DONE X

SELF TOTAL

198ms 198ms
30.92%30.92%

3ms

309ms

0.39% 48.34%

2ms

0.20%

0

Oms

0.00%

0

Oms

0.00%

480ms
74.95%

622ms

97.26%

622ms

97.26%

625ms

/b 97.65%

Heavy (Bottom Up) ¥
Self

Total

4364.6 ms 4364.6 ms

Oms %
Oms 0%
626.2ms 97.65%
1.3ms .20%
Oms %
Oms 0%
Oms %
Oms 0%
1.3ms .20%
Oms 0%
Oms %
1.3ms 0.20%
50ms 0.78%
2.5ms .39%
Oms %
Oms 0%
Oms %
Oms 0%
1.3ms 0.20%
1.3ms 0.20%
Oms %
1.3ms 0.20%
Oms %
Oms 0%
Oms %
Oms 0%
Oms %
Oms 0%
Oms %
Oms 0%

630.0 ms
630.0 ms
626.2 ms
485.4 ms
310.6 ms
144.6 ms
137.1ms
122.0 ms
113.2 ms
96.8 ms
66.6 ms
25.1ms
5.0ms
2.5ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms
1.3 ms

© 2016 NodeSource Confidential

0O O

N W

Vi N 00

N N
N

B

et e e = NN
O = N 00

o U

~ (o)) -] @,

A~
o)

A O/
r /0

00
N
D

o/
r /0

o/
/0

N
Vi

o0
B
~ U1 W O

o/

/0

o/
/0

::_]/’

/70

s U/f
/0

o W U

N

%

o/
/0

~
Vi

-

%

o/
/70

W

o/
70

co N O

o/
/70

© ©

.39%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%
0.20%

Function
(idle)
listOnTimeout

> main

» doStuff

>z

>y

> a

»b

> C

P X

> d

>e

» f
(program)
(garbage collector)

» readableAddChunk
processStats

» ChildProcess.spawn

» exports.stat

P spawn

» stopProfiling

P exports.spawn

» Readable.read

» exports.execFile

P exports.exec

» Readable.push
start

» profiler.startProfiling

» stats.ps

» (anonymous function)
onread

CPU protiling insights- tablular view of functions (Chrome Dev Tools)

(program):-1
timers.|s:55
/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:14

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:30

/Users/pmuellr/Projects /slides/2016/01-intro-to-profiling/samples/cpu-profile.js:26

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:27

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:19

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:20

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:21

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:28

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:22

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:23

/Users/pmuellr/Projects/slides/2016/01-intro-to-profiling/samples/cpu-profile.js:24

(program):-1
(program):-1
stream_readable.js:122
nsolid.js:247
internal/child _process.js:251
nsolid.js:1165
(program):-1
(program):-1
child_process.js:355
stream_readable.js:249
child_process.js:117
child_process.js:108
stream_readable.js:98
nsolid.js:105
profiler.js:174
nsolid.js:1315
nsolid.js:1136
net.is:500

How do you get profiling information
rrom Node.|s applications?

Profiling tools

v8-profiler package on npm

manually instrument your application, load profile data
into Chrome Dev Tools

N|Solid from NodeSource

- generate and display profiles at the click of a button

@ 23 © 2016 NodeSource Confidential

Profiling with v8-profiler

using v8-profiler from npm
npm install v8-profiler

- add v8-proftiler to your package.json dependencies, it not
running locally

- add code to your app for triggers tor starting /stopping CPU
profiles, and to generate heap snapshots

- the triggers will:
- call functions in v8-profiler
- save results of v8-profiler function calls into JSON files
run your app and trigger the profiles you want to generate
load JSON Tiles into the Profiles tab of Chrome Dev Tools

@ 24 © 2016 NodeSource Confidential

Profiling with NodeSource’s N|Solid

what is N|Solid?

N|Solid is a fully compatible Node.js v4.x LTS runtime that
nas been enhanced to provide additional runtime
dlagnostics.

Provides a web-based console to:
monitor applications at scale, in production

obtain process- and system- specific statistics for an
individual application instance

obtain and view CPU profiles and heap snapshots at the
click of a button

@ 25 © 2016 NodeSource Confidential

Profiling with NodeSource’s N|Solid

using N|

Solid

Run your app with the N|Solid runtime

Open the N|Solid Console in a browser, navigate to your
application, press the buttons to generate a CPU profile or

heap snapshot

. The resL

lts are shown in the N

is available to download for fu

Tools

@ 26 © 2016 NodeSource Confidential

Solid Console, and the data

‘ther analysis in Chrome Dev

Demo time!

sample applications being profiled:
https://gist.github.com/pmuellr/2c7e9¢c7b95352d1b33e0

https://gist.github.com/pmuellr/2c7e9c7b95352d1b33e0

Get involved in building new profiling tools!

follow the Node.js Tracing Work Group

https://github.com/nodejs/tracing-wg/issues/38

write your own profiling visualizers

- CPU protiles and heap snapshots are just JSON!

@ 28 © 2016 NodeSource Confidential

https://github.com/nodejs/tracing-wg/issues/38

N|Solid references

Download N|Solid - free for development:
https://nodesource.com/products/nsolid

N|Solid documentation:
https://docs.nodesource.com/

Getting Started with N|Solid:
https://nodesource.com/blog/getting-started-with-nsolid-at-the-command-line/

Getting Started with the N|Solid Console:
https://nodesource.com/blog/getting-started-with-the-nsolid-console/

@ 29 © 2016 NodeSource Confidential

V8 protfiling references

Google Developers - “How to Record Heap Snapshots” - introduction to heap
snapshots:

https://developers.google.com/web/tools/chrome-devtools/profile/memory-
problems/heap-snapshots

Google Developers - “Speed Up JavaScript Execution” - introduction to CPU
orofiles:

nttps://developers.google.com/web/tools/chrome-devtools/profile/rendering-tools/
|S-execution

- v8-profiler package at npm - open source package exposing V8’s profiling APIs:
https://www.npmijs.com/package/v8-profiler

@ 30 © 2016 NodeSource Confidential

Questions during the Need to Node webcast?

DOSt a question to Twitter
with the hashtag

#needtonode

these slides at pmuellr.github.io/slides

Thank you.

Patrick Mueller

pmuellr@nodesource.com

@pmuellr

)

NODESOURCE

